skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Liangcai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Whenever the elastic energy of a solid depends on magnetic field, there is a magnetostrictive response. Field-linear magnetostriction implies piezo- magnetism and vice versa. Here, we show that Mn3Sn, a non-collinear anti- ferromanget with Weyl nodes, hosts a large and almost perfectly linear magnetostriction even at room temperature. The longitudinal and transverse magnetostriction, with opposite signs and similar amplitude are restricted to the kagome planes and the out-of-plane response is negligibly small. By studying four different samples with different Mn:Sn ratios, we find a clear correlation between the linear magnetostriction, the spontaneous magneti- zation and the concentration of Sn vacancies. The recently reported piezo- magnetic data fits in our picture. We show that linear magnetostriction and piezomagnetism are both driven by the field-induced in-plane twist of spins. A quantitative account of the experimental data requires the distortion of the spin texture by Sn vacancies. We find that the field-induced domain nucleation within the hysteresis loop corresponds to a phase transition. Within the hys- teresis loop, a concomitant mesoscopic modulation of local strain and spin twist angles, leading to twisto-magnetic stripes, arises as a result of the com- petition between elastic and magnetic energies. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025